Абстракт

В 2017 г. выполнены работы: 1) выполнен синтез металл/полупроводниковых наночастиц фотокатализатора Au/TiO2, Ag/TiO2, Ag/CuOx методами: а) фотокаталитического осаждения наночастиц металла на поверхности наночастиц диксида титана из раствора соли соответствующего металла; б) из смеси наночастиц металла и полупроводника, формированием плёнок и их отжигом (проведено сравнение фемтосекундной динамики релаксационных процессов для однотипных наночастиц металла в виде водного коллоида и импрегнированных в матрицу диоксида титана); г) магнетронного распыления (Ag/Cu). методами фемтосекундной лазерной спектроскопии в перечисленных системах изучена динамика релаксационных процессов при возбуждении плазмонного резонанса. Изучено влияние длины волны возбуждения (возбуждение в пике и с длинноволнового края полосы плазмонного резонанса), мощности импульса возбуждения, взаимной ориентации импульсов возбуждения и пробного импульсов на форму и динамику изменения дифференциальных спектров; методами стационарного фотолиза, абсорбционной спектроскопии и просвечивающей электронной микроскопии изучены процессы изменения морфологии наночастиц золота в суспензии Au/TiO2 при возбуждении полосы плазмонного резонанса. Оценён квантовый выход восстановления метилвиологена в этой системе. Продемонстрирована фотокаталитическая инактивация бактериальных клеток в этой системе под видимым светом. Фотокаталитическая инактивация бактериальных клеток продемонстрирована в системе Ag/CuOx и продемонстрирован выраженный синергизм Ag и Cu. В опытах с фемтосекундным лазерным фотолизом выявлены спектральные признаки переноса электрона от металлической наночастицы в зону проводимости полупроводника, такие как, анизотропия дифференциальных спектров, сдвиг полос плазмонного резонанса. В опытах со стационарным фотолизом методами электронной микроскопии обнаружено изменение формы наночастиц золота при возбуждении в плазмонную полосу металла, что указывает на перенос электрона от металла в полупроводник. Квантовый выход восстановления метилвиологена достигает ~ 1.5-3%, что связано с инжекцией электрона от металла в зону проводимости полупроводника. Инактивация бактерий в системе Au/TiO2 под видимым светом также, по-видимому, обусловлена межфазным переносом электрона, т.к. наночастицы Au и TiO2 по отдельности при возбуждении видимым светом противомикробного действия не проявляют. Не запланированным результатом стало обнаружение методами фемтосекундного фотолиза ранее не описанной длинноволновой полосы комбинационного рассеяния в кварцевых окошках SiO2 с частотой 1.46 ТГц (48.6 см-1). Наночастицы золота в данном случае, по-видимому, обеспечили SERS эффект, возбуждение комбинационно активных полос происходило по механизму impulsive stimulated Raman scattering (ISRS).

Полученные за период, на который предоставлен грант, результаты с описанием методов и подходов.

СИНТЕЗ металл/полупроводниковых наночастиц фотокатализатора Au/TiO2, Ag/TiO2, Ag/CuOx выполнен методами: а) фотокаталитического осаждения наночастиц металла на поверхности наночастиц диксида титана из раствора соли соответствующего металла (Au/TiO2, Ag/TiO2); б) из смеси наночастиц металла и полупроводника, формированием плёнок и их отжигом (проведено сравнение фемтосекундной динамики релаксационных процессов для однотипных наночастиц металла в виде водного коллоида и импрегнированных в матрицу диоксида титана); г) магнетронного распыления (Ag/Cu).

ФЕМТОСЕКУНДНАЯ ЛАЗЕРНАЯ СПЕКТРОСКОПИЯ. В перечисленных системах изучена динамика релаксационных процессов при возбуждении плазмонного резонанса (Localized surface plasmon

resonance LSPR). К настоящему времени имеется значительное количество экспериментальных фактов, которые указывает на протекание реакций переноса электрона на границе металлических наночастиц инициируемых поглощением кванта света в полосе плазмонного резонанса. Сформулированы общие представления о последовательности релаксационных процессов в плазмонной наночастице после возбуждения плазменных колебаний (плазмона): 1) характерное время релаксации плазмона около 5-10 фс; 2) распад плазмона приводит к образованию электрон-дырочной пары с энергией равной энергии плазмона, т.е. неравновесный электрон, возникший в этом акте, может иметь максимальную энергию равную энергии плазмона; 3) неравновесный электрон приходит в равновесие с электронами проводимости, устанавливается электронная температура Те, время установления по порядку величины составляет несколько сотен фемтосекунд (зависит от уровня энергии возбуждения; 4) электрон-фононное взаимодействие определяет релаксацию Те и разогрев решетки наночастицы Тр, по порядку величины около 4 -6 пс; 5) наиболее медленный процесс – перенос тепла в окружающую среду. Т.к. теплоемкость электронного газа много меньше теплоемкости решетки всегда справедливо

неравенство Те>>Тр. Установлен, что спектр полосы плазмонного резонанса определяется размером и формой наночастиц, а также, частотной зависимостью диэлектрических постоянных металла $\epsilon_{M}(\omega) = \epsilon'(\omega) + i \epsilon''(\omega)$ и окружающей среды ε_д(ω) [последняя слабо зависит от частоты]. Дифференциальные спектры $\Delta A(\lambda,t) = A(\lambda,t) - A(\lambda,t)$, приводимые ниже, отражают тот факт, что спектр плазмонной полосы A(λ,t=-∞) до возбуждения изменился до A(λ,t) из-за изменения ε_м(ω) и/или єд. Возбуждение плазмона в наночастице не приводит к изменению вида полосы поглощения наночастицы. Дифференциальный

в воде и в пленке TiO2. Аппроксимация лорентцианом.

сигнал ΔΑ(λ,t) = 0. ε_м(ω) меняется из-за разогрева Те и/или Тр, генерации электрон-дырочных пар. єд в окрестности наночастицы меняется при 20 инжекции электрона в среду. Свободные 5 носители заряда понижают $\epsilon_{a}(\omega)$.

На основе данных фемтосекундного фотолиза мы пытаемся ответить на вопрос, происходит ли перенос электрона в зону проводимости полупроводника при исчезновении плазмона или в наночастице металла образуется неравновесная электрон-дырочная пара и неравновесный электрон преодолевает барьер на контакте и попадает в зону проводимости полупроводника или происходит инжекция электронов за счет высокой температуры электронного газа Те.

Рисунок 1 демонстрирует, что ширина плазмонной полосы наночастиц Au в TiO2 почти в 2 раза шире, чем в воде, что может

Рисунок 2 Дифференциальные спектры поглощения Аи/ТіО2. Синим – возбуждение на 560 нм и красным возбуждение на 740 нм.

указывать на вдвое более высокую скорость распада плазмона в TiO2. Чтобы убедиться, что уширение не связано с неоднородным уширением сравним дифференциальные спектры Au/TiO2 при возбуждении на 560 нм и 740 нм. Рис.2 показывает, что полосы выцветания почти совпадают, т.е. матрица TiO2 внесла незначительное неоднородное уширение. Таким образом мы показали, что распад плазмона для наночастицы Au в матрице TiO2 почти вдвое быстрее, чем в воде. Второй существенной особенностью для наночастиц золота в TiO2 по сравнению с водой является

Рисунок 3 Дифференциальные спектры Au/TiO2 возбуждение 740 нм, 25 фс. Шаг по времени 10 фс. Стрелка показывает направление увлечения времени задержки между возбуждением и пробным импульсом.

Полоса поглощения в области выше 19800 см-1, обусловленная уширением плазмонной полосы и/или её сдвигом после возбуждения плюс усилением межзонного перехода 5d-6sp по мере разогрева электронного газа и возникновения свободных состояний вблизи уровня Ферми. Подобный сдвиг не наблюдается в случае золотых наночастиц в воде. (Рисунок 4). Рисунок 4 показывает, что положение полосы выцветания и её сдвиг зависят от взаимной поляризации пробного и возбуждающего импульсов. Эффект поляризации, повидимому, обусловлен тем, что

проявление сдвига полосы выцветания (Рисунок 3). Рисунок 3 выявляет основные особенности дифференциальных спектров. Полоса поглощения ниже 16500 см-1, обусловленная уширением плазмонной полосы и/или её сдвигом после возбуждения. Полоса выцветания $\Delta A <$ 0, связанная с уменьшением поглощения в полосе плазмонного резонанса.

Рисунок 4 Дифференциальные спектры наночастиц золота (столбец слева) и положение пика выцветания со временем (столбец справа). А-H2O, B-TiO2. В кривых сдвига полосы выцветания черным цветом обозначена параллельная ориентация вектора Е, красным перпендикулярная и зелёным-магический угол импульсов возбуждения и зондирования.

диэлектрическая проницаемость окружающей матрицы становится не изотропной вокруг наночастицы. Качественно это объяснимо тем, что плазменные осцилляции возбуждаются за счет дипольного перехода и можно было бы предположить инжекцию электрона в TiO2 по направлению диполя. Рисунок 5 показывает спектры Керра (ΔАпар - ΔАперп) для наночастиц золота в воде в TiO2. Анализ спектров Керра указывает, что анизотропия обусловлена различием спектрального сдвига полос плазмонного резонанса для параллельной и перпендикулярной поляризаций. На основании приведенных

10-05-00-05--10--15-

1.5

16 18 20 22 24сто² волжаве число (15ск) Рисунок 5 Спектры Керра:1-Au/TiO2 50 fs,

2- Au/TiO2 300 fs; 3-Au/H2O 50 fs, 4-Au/H2O 300 fs

данных (Рис. 1-5) было сделано предположение, что прямой механизм – распад плазмона с

инжекцией электрона в зону проводимости TiO2 является существенным каналом переноса электрона. Более детальный анализ кинетических кривых и дифференциальных спектров поглощения полученных при различных энергиях импульса возбуждения позволил заключить, что наряду с прямым каналом инжекции электрона возможен также и перенос с участием

Рисунок в кинетическия кривия оифференциильного сигнала вооного коллоидного раствора наночастиц Au 15 нм (красная линия), пробная длина волны 480 нм, вверху невязка (синяя кривая).

неравновесных и «горячих» электронов. Отношение вероятности этих каналов будет установлено в дальнейшей работе. В опытах, проведенных с системой Ag/TiO2 качественно наблюдаются аналогичные эффекты, связанные с анизотропией сигнала дифференциальных спектров и сдвиги полос выцветания. Однако, имеющиеся образцы Ag/TiO2 проявили неоднородность. В этих образцах выявлены частицы Ад двух типов отличающиеся по форме и размеру. В дифференциальных спектрах их наличие проявилось как две спектальные полосы. Это обстоятельство создает некоторые трудности в представлении полученных результатов. Тем не менее, можно заключить, что скорость

инжекции электрона в системе Ag/TiO2 была выше, чем в Au/TiO2. Были выполнены опыты с пленками Au/TiO2 пр температуре жидкого азота. Результаты носят предварительный характер и необходимо продолжение работы в этом направлении.

ISRS SiO2. В опытах с коллоидом наночастиц золота был получен незапланированный результат. Рис.6 демонстрирует осциллирующую компоненту кинетических кривых Au 15 нм. Фурье анализ выявил моды осцилляций (Рис.7). Анализ опытов позволил заключить, что осцилляции с частотой 0.29 ТГц связаны с акустическими колебаниями в Au 15 нм, эти же осцилляции выявлены для образцов Au 15 нм импрегнированных в TiO2. Пики с частотами около 6, 7, 11 и 15 ТГц можно отнести к спектральным компонентам несимметричной рамановской полосы R-band δbend (SiOSi). Эти спектральные полосы трудно различимы в спектрах комбинационного рассеяния [M. Chligui,

Рисунок 7 FFT преобразование невязки и Рис.6 в окне задержек до 4 пс и внизу в окне задержек до 1 пс, чтобы выявить быстро затухающие осцилляции около 15 ТГц.

G. Guimbretiere, A. Canizares, G. Matzen, Y. Vaills, et al. New features in the Raman spectrum of Silica: Keypoints in the improvement on structure knowledge. 2010. <hal-00520823>]. Низкочастотные колебания с частотой около 1.4 ТГц также относятся к SiO2. Происхождение пиков связано с сигналом от кварцевых окошек кюветы после контакта с золотыми наночастицами. Интенсивность сигнала от чистых окошек на порядок была ниже. Предположительно усиление можно связать с SERS эффектом [Nie S, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. science. 1997 Feb 21;275(5303):1102-6.]. Осцилляции в кварце возбуждались фемтосекундным импульсом по механизму импульсного стимулированного комбинационного рассеяния ISRS [De Silvestri S, Fujimoto JG, Ippen EP, Gamble EB, Williams LR, Nelson KA. Femtosecond time-resolved measurements of optic phonon dephasing by impulsive stimulated raman scattering in α-perylene crystal from 20 to 300 K. Chemical physics letters. 1985 May 3;116(2-3):146-52.]. ISRS методика позволила выявить осцилляции трудно наблюдаемые классическими методами комбинационной спектроскопии. Учитывая практическую важность кварца, как материала широкого применения, мы сообщаем об этих новых спектральных наблюдениях.

Система Ag/CuOx была исследована различными методами: электронной микроскопии - Scanning transmission electron microscopy (STEM); фотоэлектронной спектроскопии X-ray

Рисунок 8 Дифференциальные спектры Ag/CuOx полсле возбуждения 560 нм. Время задержки: 1) 60 fs; 2) 100 fs; 3) 500 fs; 4) 1 ps; 5) 2.4 ps; 6) 35 ps; 7) 485 ps.

photoelectron spectroscopy (XPS); ИК спектроскопии ATR-FTIR; абсорбционной спектроскопии; масс-спектрометрии inductively coupled plasma mass-spectrometry (ICP-MS); электрохимии; фемтосекундной лазерной спектроскопии; методами микробиологического анализа. Методами фемтосекундной

лазерной спектроскопии были выявлены основные релаксационные процессы в этой системе. Рисунок 8 показывает типичные дифференциальные

спектры для подобных систем. Было показано, что проявляется выраженный синергизм в инактивации бактерий при использовании системы Ag/Cu (Рис.9) в качестве фотокатализатора. Был предложен гипотетический механизм антибактериального действия

Рисунок 9 Характерное время инактивации бактерий E.coli на пленках Ag/CuOx

в этой системе, который предполагает межфазный перенос электрона в Ag/CuOx.

Стационарный фотолиз Au/TiO2. Рисунок 10 демонстрирует изменения спектров поглощения и морфологии наночастиц Au/TiO2 в водном коллоиде при облучении непрерывным видимым

Рисунок 10 Спектры поглощения и изображения просвечивающей электронной микроскопии отдельных образцов наночастиц. Облучение наночастиц Au/TiO2 светом с длиной волны 530 нм. Поток мощности 100 мВт/см2. Образец Au/TiO2 до облучения. Образец Au/TiO2 облучение 72 часа. Образец Au/TiO2 с добавлением 1мМ HAuCl4 облучение 24 часа.

светом 530 в полосу плазмонного резоннанса наночастиц золота. Исходный образец Au/TiO2 был приготовлен методом фотокаталитического осаждения ионов Аи на поверхности наночастиц ТіО2 при их облучении УФ светом 360 нм. В опытах со стационарным фотолизом методами электронной микроскопии обнаружено изменение формы наночастиц золота при возбуждении в плазмонную полосу металла, что указывает на перенос электрона от металла в полупроводник. Этот факт подтверждает существенное изменение полосы поглощения

Au/TiO2 после облучения образца с добавлением 1мМ HAuCl4 в течении 24 часа. Полоса

плазмонного резонанса смещается в длинноволновый диапазон, изображение электронной микроскопии показывает образование наночастиц золота в виде иголок и мелкодисперной фракции частиц. Мелкие наночастицы золота с размером заметно менее 5 нм в спектрах поглощения проявляются как плечо полосы поглощения короче 550 нм и, по-видимому, плечо полосы поглощения короче 525 нм после обучения 24 часа в присутствии ионов золота (Рисунок 10) связаны с образованием мелких фракций золотых наночастиц. Сдвиг полосы плазмонного резонанса, по-видимому, следует связать с образованием наночастиц золота в виде иголок. При отсутствии в растворе ионов золота изменения спектров поглощения и морфологии образца существенно менее выражены. На данном этапе можно предположить, что обнаруженные превращения связаны с процессами инжекции электронов из золотых наночастиц в диоксид титана. Детали механизма превращений предстоит выяснить на следующих этапах работы.

Межфазный перенос электрона на внешний акцептор электрона. Дополнительным доказательством факта переноса электрона стало наблюдение восстановления акцептора электронов при возбуждении Au/TiO2 в полосу плазмонного резонанса наночастиц золота. Удобным акцептором выступает метилвиологен, который как известно способен акцептировать электрон из зоны проводимости TiO2. При облучении Au/TiO2 светом видимого диапазона (530 нм) наблюдается образование восстановленного MV^{+.} В присутствии жертвенного донора электронов (дититриэтола). Квантовый выход восстановления метилвиологена быо оценен на уровне ~ 1.5-3%.

Инактивация бактерий в системе Au/TiO2 под видимым светом. В данной части работы нами в предварительных опытах было показано, что ионы золота обладают выраженным

Рисунок 11 Выживаемость бактерий Е. coli AB1157 при облучении видимым светом в присутствии Au/TiO2.

эффектом инактивации грамм-положительных и грамм-отрицательных штаммов бактерий *Escherichia coli* AB1157 (minimum inhibitory concentration MIC= 1.0±0.3 µg ml⁻¹), *Pseudomonas aeruginosa* PAO1 (MIC= 80±10 µg ml⁻¹), *Serratia proteamaculans* 94 (MIC= 1.4±0.3 µg ml⁻¹). Наночастицы Au и TiO2 ни в темноте, ни на видимом свету ингибирующим эффектом не обладают. Однако, как мы обнаружили освещение видимым светом *Au/TiO2* приводит к

инактивации Escherichia coli AB1157 (Рис.11). Это означает, что биосовместимые по отдельности препараты Au и TiO2 при создании контакта, на свету приобретают новые свойства, угнетающие биологическую клетку. На данном этапе работы, можно заключить, что антибактериальный эффект проявился, по-видимому, в результате межфазного переноса электрона в зону проводимости TiO2 из-за возбуждения плазмонного резонанса наночастиц Au. Но пока нельзя ответить на вопрос, собственно антибактериальный эффект связан с образованием ионов золота или из-за образования активных форм кислорода при акцептировании электрона из зоны проводимости TiO2 растворенным кислородом и образованием O₂^{-.}? Мы постараемся ответить на этот вопрос в дальнейшем.

Публикации.

Опубликована статья:

1. Rtimi S, Nadtochenko V, Khmel I, Bensimon M, Kiwi J. First unambiguous evidence for distinct ionic and surface-contact effects during photocatalytic bacterial inactivation on Cu–Ag films: Kinetics, mechanism and energetics. Materials Today Chemistry. 2017 Dec 31;6:62-74. DOI: 10.1016/j.mtchem.2017.11.001

Задачи Проекта, которые должны быть решены в следующем году, их связь с целью и задачами Проекта (перечислить задачи и указать распределение исполнителей по задачам на следующий год реализации Проекта)

В проект были поставлены задачи:

 разработать методы синтеза металл/полупроводник наночастиц фотокатализатора обеспечивающих высокий (десятки процентов) квантовый выход фоторазделения заряда;

2) исследовать динамику переноса заряда методами широкополосной фемтосекундной лазерной спектроскопии в разработанных наноразмерных системах металл полупроводник;

3) выявить закономерности фотоиндуцированного межфазного переноса электрона в наноразмерных системах металл/полупроводник, а именно, ответить на вопрос о зависимости эффективности распада, локализованного поверхностного плазмона-поляритона (плазмона) на интерфейсе металл/полупроводник и зависимости квантового выхода переноса электрона в зону проводимости полупроводника от химического состава и структуры контакта.

Знания о закономерностях фотоиндуцированного межфазного переноса электрона в плазмонных системах необходимы для разработки новых композитных материалов для фотоники, фотокатализа и преобразователей энергии света в химическую и электрическую.

В 2018 году в рамках, сформулированных выше задач, будут решаться следующие подзадачи:

1) Будет продолжено изучение механизма инжекции электрона от металла в зону проводимости TiO2 на границе раздела металл/полупроводник при возбуждении полосы плазмонного резонанса в системах Au/TiO2 и Ag/TiO2. Методами фемтосекундной лазерной спектроскопии будет исследоваться динамика релаксации возбужденных состояний в системах металл/полупроводник. Процессы релаксации происходят на фемто-, пикосекундной шкале времени. Мы надеемся получить ответ на вопрос как поляризация полупроводника в ближнем поле плазмонной наночастицы влияет на разделение зарядов на контакте металл/полупроводник. Для этого будут использованы экспериментальные данные получаемые методами фемтосекундной спектроскопии и теоретические модели описывающие распределения электромагнитного поля в ближнем поле плазмонной наночастицы. Новизной в этом направлении работы будут опыты с варьированием фемтосекундного импульса накачки в широком диапазоне энергий. Таким образом можно существенно варьировать уровень возбуждения плазмонов и плюс силу электромагнитного поля в ближнем поле частицы. Также будет продолжено изучение поляризационных эффектов методами фемтосекундой лазерной спектроскопии. Эти опыты могут прояснить вопрос с поляризацией полупроводника и энергетическим барьером для переноса электрона на контакте в условиях сильного электромагнитного поля, т.к. ближнее поле плазмонной частицы существенно не изотропно и усиление поля в «горячих» пятнах внутри полупроводника ожидается высоким.

Выполняют следующие работы

А) Астафьев Артём Александрович, Шахов Александр Михайлович, Айбуш Арсений Валерьевич определяют общие физико-химические свойства образцов, проводят анализ методами микроскопии, спектроскопии и т.п.

 Б) Астафьев Артём Александрович, и Айбуш Арсений Валерьевич проводят теоретическое моделирование объектов (расчёт ближнего поля, поляризации полупроводника и т.п.)
В) Гостев Фёдор Евгеньевич и Шахов Александр Михайлович проводят эксперименты лазерной фемтосекундной спектроскопии

Г) Тастекова Элина Азатовна и Титов Андрей Анатольевич готовят образцы, участвуют в процессе обработки экспериментальных данных

Д) Надточенко Виктор Андреевич, Астафьев Артём Александрович, Шахов Александр Михайлович, Айбуш Арсений Валерьевич, Гостев Фёдор Евгеньевич, Тастекова Элина Азатовна и Титов Андрей Анатольевич участвуют в планировании экспериментов, в обсуждении полученных результатов и написании статей по теме проекта.

2) Мы предполагаем расширить круг объектов и дополнительно к уже начатой работе с наночастицами Au/TiO2 и Ag/TiO2 исследовать систему Au/CdSe. В этой системе можно ожидать новых эффектов, связанных со взаимодействием плазмона Au и экситона CdSe, роли такого взаимодействия в процессах релаксации возбуждённых состояний при возбуждении плазмона и экситона. Методически исследование этой системы будет близко к заявленным в предыдущем пункте подходам к исследованию Au/TiO2 и Ag/TiO2.

Выполняют следующие работы

А) Астафьев Артём Александрович, Шахов Александр Михайлович, Айбуш Арсений Валерьевич определяют общие физико-химические свойства образцов, проводят анализ методами микроскопии, спектроскопии и т.п.

Б) Астафьев Артём Александрович, и Айбуш Арсений Валерьевич проводят теоретическое моделирование объектов (расчёт ближнего поля, поляризации полупроводника и т.п.)

В) Гостев Фёдор Евгеньевич и Шахов Александр Михайлович проводят эксперименты лазерной фемтосекундной спектроскопии

Г) Тастекова Элина Азатовна и Титов Андрей Анатольевич готовят образцы, участвуют в процессе обработки экспериментальных данных

Д) Надточенко Виктор Андреевич, Астафьев Артём Александрович, Шахов Александр Михайлович, Айбуш Арсений Валерьевич, Гостев Фёдор Евгеньевич, Тастекова Элина Азатовна и Титов Андрей Анатольевич участвуют в планировании экспериментов, в обсуждении полученных результатов и написании статей по теме проекта.

Ожидаемые в конце периода, на который будет предоставлен грант, научные результаты

В конце периода предполагается получить новые фундаментальные знания о механизме инжекции электрона от металла в зону проводимости TiO2 на границе раздела металл/полупроводник при возбуждении полосы плазмонного резонанса в системах Au/TiO2 и Ag/TiO2 и Au/CdSe. Эти знания будут основывать на экспериментальных данных о динамике релаксации возбужденных состояний в системах металл/полупроводник на фемто-, пикосекундной шкале времени. В частности, на экспериментальных данных и теоретических данных, описывающих распределения электромагнитного поля в ближнем поле плазмонной наночастицы. Новизной в этом направлении работы будут опыты с варьированием фемтосекундного импульса накачки в широком диапазоне энергий. Таким образом можно существенно варьировать уровень возбуждения плазмонов и плюс силу электромагнитного поля в ближнем поле частицы. Также будут получены новые данные о поляризационных эффектах. Эти данные могут прояснить вопрос с поляризацией полупроводника и энергетическим барьером для переноса электрона на контакте в условиях сильного электромагнитного поля, т.к. ближнее поле плазмонной частицы существенно не изотропно и усиление поля в «горячих» пятнах внутри полупроводника ожидается высоким.

Также результатом работы будут новые экспериментальные данные о фотокаталитических свойствах заявленных систем.